Муниципальное автономное общеобразовательное учреждение «Лингвистическая гимназия № 20 имени Л.Л. Верховцевой» г. Сарапула Удмуртской Республики

РАССМОТРЕНО	ОТКНИЧП	УТВЕРЖДАЮ
Протокол кафедры естественнонаучных дисциплин № 1 от 29.08.2024 г.	Протокол педагогического совета № 1 от $30.08.2024 \Gamma$.	Директор МАОУ «Лингвистическая гимназия № 20»/Т.П. Теплякова/
		УТВЕРЖДЕНО приказом МАОУ «Лингвистическая гимназия № 20» от 30.08.2024 г. № 180 - ОД

Рабочая программа курса внеурочной деятельности «Код будущего»

Составитель: Никишин А.Н.

учитель информатики МАОУ «Лингвистическая гимназия № 20»

Пояснительная записка

Рабочая программа курса внеурочной деятельности «Код будущего» (7-8 класс) является частью образовательной программы, реализующейся в МАОУ «Лингвистическая гимназия № 20» г. Сарапула УР. Программа составлена на основе:

- федерального государственного образовательного стандарта основного общего образования;
 - федеральной образовательной программы основного общего образования.

Курс «Код будущего» относится к обще интеллектуальному направлению. Данная программа используется для ведения курса в объеме 34 часов для обучающихся 7-8-х классов.

Цель программы – формирование информационно-коммуникационной грамотности учащихся

Задачи занятий:

- систематизация и расширение знаний учащихся в области информатики;
- формирование у учащихся умений работы с тестами;
- повышение мотивации и интереса учащихся к обучению, активизация их самостоятельной учебно-познавательной деятельности.

Содержание программы направлено на систематизацию и расширение знаний учащихся в области информатики. Учащиеся знакомятся с новыми программами. Значительный объём учебного времени отводится на решение тестов, практические занятия.

При занятий используются обучения, проведении различные формы направленные на развитие способностей и самостоятельной работы учащихся. Объяснение приёмов работы сопровождается демонстрацией примеров. Индивидуальный подход к обучению реализуется методом проектов. В ходе работы над проектом учащиеся занимаются с различными методами, технологиями, решениями различных задач.

Планируемые результаты освоения курса

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать классифицировать, аналогии, самостоятельно выбирать критерии классификации, основания И ДЛЯ устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках

- предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми

понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей
 таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Ученик научится:

- основам языка программирования Python;
- использовать на практике как простые, так и сложные
- структуры данных и конструкции для работы с ними;
- искать и обрабатывать ошибки в коде;
- разбивать решение задачи на подзадачи;
- писать грамотный, красивый код;
- анализировать как свой, так и чужой код;
- основам представления, кодирования, хранения и передачи
- информации, логических законов построения компьютеров;
- работать с информацией: находить, оценивать и использовать

- информацию из различных источников, необходимую для решения
- профессиональных задач (в том числе на основе системного подхода);
- грамотно строить коммуникацию, исходя из целей и ситуации.

Ученик получит возможность:

- выполнять эквивалентные преобразования логических выражений, используя законы алгебры логики, в том числе и при составлении поисковых запросов;
- переводить заданное натуральное число из двоичной записи в восьмеричную и шестнадцатеричную и обратно; сравнивать, складывать и вычитать числа, записанные в двоичной, восьмеричной и шестнадцатеричной системах счисления;
- использовать знания о графах, деревьях и списках при описании реальных объектов и процессов;
- строить неравномерные коды, допускающие однозначное декодирование сообщений, используя условие Фано; использовать знания о кодах, которые позволяют обнаруживать ошибки при передаче данных, а также о помехоустойчивых кодах;
- понимать важность дискретизации данных; использовать знания о постановках задач поиска и сортировки; их роли при решении задач анализа данных;
- использовать навыки и опыт разработки программ в выбранной среде программирования, включая тестирование и отладку программ; использовать основные управляющие конструкции последовательного программирования и библиотеки прикладных программ; выполнять созданные программы;
- разрабатывать и использовать компьютерно-математические модели; оценивать числовые параметры моделируемых объектов и процессов; интерпретировать результаты, получаемые в ходе моделирования реальных процессов; анализировать готовые модели на предмет соответствия реальному объекту или процессу;
- применять базы данных и справочные системы при решении задач, возникающих в ходе учебной деятельности и вне ее; создавать учебные многотабличные базы данных;
- классифицировать программное обеспечение в соответствии с кругом выполняемых задач;
- понимать основные принципы устройства современного компьютера и мобильных электронных устройств; использовать правила безопасной и экономичной работы с компьютерами и мобильными устройствами;
- критически оценивать информацию, полученную из сети Интернет.

Содержание программы учебного предмета (68 часов)

1. Линейные и разветвленные алгоритмы (24 часа).

Знакомство с Python. Команды input() и print(), параметры sep, end. Переменные. Комментарии, целочисленная арифметика в Python. Решение задач. Условный оператор. Логические операции and, or, not.

2. Циклические алгоритмы (10 часов).

Повторение пройденного. Вложенные условия. Типыданныхіпt, float, str. Функции min(), max(), abs().Циклическиеалгоритмы. Цикл for. Функция range().Задачисциклами. Цикл while. Операторы break, continue.

Учебно-тематический план

п/п	Наименование разделов и тем	Количество
		часов по
		программе
1	Линейные и разветвленные алгоритмы	24
2	Циклические алгоритмы	10

Поурочное планирование

Наименование раздела	Номер урока	Тема урока
	1 - 3	1.1 Знакомство с Python. Команды input() и print()
	4 - 5	1.2 Параметры sep, end. Переменные. Комментарии
Раздел 1. Линейные и разветвленные алгоритмы	6 - 12	1.3 Целочисленная арифметика в Python. Решение задач
	13 - 18	1.4 Условный оператор. Логические операции and, or, not
	19 - 24	1.5 Проектная работа «Калькулятор»
	25 - 27	2.1 Повторение пройденного. Вложенные условия
	28 - 30	2.2 Типыданных int, float, str. Функции min(), max(), abs()
	31	2.3 Циклические алгоритмы. Цикл for. Функция range()
Раздел 2 Циклические алгоритмы	32-33	2.4 Задачи с циклами. Цикл while. Операторы break, continue
	34	2.5 Проектная работа «Продвинутый калькулятор»

Список использованной литературы

- 1. К. Ю. Поляков, Е. А. Еремин. Информатика. Углублённый уровень. Учебник для 8, 9, 10 классов. М.: БИНОМ. Лаборатория знаний, 2014 (или более поздние редакции).
- 2. М. Лутц. Изучаем Python. СПб.: Символ-Плюс, 2011.
- 3. Задачи по программированию. Под ред. С. М. Окулова. М.: БИНОМ. Лаборатория знаний, 2006.
- 4. С. М. Окулов. Основы программирования. М.: Бином. Лаборатория знаний, 2012.